Maximum st-Flow in Directed Planar Graphs via Shortest Paths

نویسندگان

  • Glencora Borradaile
  • Anna Harutyunyan
چکیده

Minimum cuts have been closely related to shortest paths in planar graphs via planar duality – so long as the graphs are undirected. Even maximum flows are closely related to shortest paths for the same reason – so long as the source and the sink are on a common face. In this paper, we give a correspondence between maximum flows and shortest paths via duality in directed planar graphs with no constraints on the source and sink. We believe this a promising avenue for developing algorithms that are more practical than the current asymptotically best algorithms for maximum st-flow.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Faster shortest paths in dense distance graphs, with applications

We show how to combine two techniques for efficiently computing shortest paths in directed planar graphs. The first is the linear-time shortest-path algorithm of Henzinger, Klein, Subramanian, and Rao [STOC’94]. The second is Fakcharoenphol and Rao’s algorithm [FOCS’01] for emulating Dijkstra’s algorithm on the dense distance graph (DDG). A DDG is defined for a decomposition of a planar graph G...

متن کامل

Minimum Cuts and Shortest Cycles in Directed Planar Graphs via Noncrossing Shortest Paths

Let G be an n-node simple directed planar graph with nonnegative edge weights. We study the fundamental problems of computing (1) a global cut of Gwith minimum weight and (2) a cycle of G with minimum weight. The best previously known algorithm for the former problem, running in O(n log n) time, can be obtained from the algorithm of Łącki, Nussbaum, Sankowski, and Wulff-Nilsen for single-source...

متن کامل

Efficient Parallel Algorithms for Planar st-Graphs1

Planar st-graphs find applications in a number of areas. In this paper we present efficient parallel algorithms for solving several fundamental problems on planar st-graphs. The problems we consider include all-pairs shortest paths in weighted planar st-graphs, single-source shortest paths in weighted planar layered digraphs (which can be reduced to single-source shortest paths in certain speci...

متن کامل

Improved algorithms for replacement paths problems in restricted graphs

We present near-optimal algorithms for two problems related to finding the replacement paths for edges with respect to shortest paths in sparse graphs. The problems essentially study how the shortest paths change as edges on the path fail, one at a time. Our technique improves the existing bounds for these problems on directed acyclic graphs, planar graphs, and non-planar integer-edge-weighted ...

متن کامل

Replacement Paths via Row Minima of Concise Matrices

Matrix M is k-concise if the finite entries of each column of M consist of k or fewer intervals of identical numbers. We give an O(n + m)-time algorithm to compute the row minima of any O(1)-concise n×m matrix. Our algorithm yields the first O(n+m)-time reductions from the replacement-paths problem on an n-node m-edge undirected graph (respectively, directed acyclic graph) to the single-source ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013